Polymer chains in confined geometries: massive field theory approach.

نویسندگان

  • D Romeis
  • Z Usatenko
چکیده

The massive field theory approach in fixed space dimensions d<4 is applied to investigate a dilute solution of long-flexible polymer chains in a good solvent between two parallel repulsive walls, two inert walls, and for the mixed case of one inert and one repulsive wall. The well-known correspondence between the field theoretical phi4 O(n) -vector model in the limit n-->0 and the behavior of long-flexible polymer chains in a good solvent is used to calculate the depletion interaction potential and the depletion force up to one-loop order. In order to make the theory UV finite in renormalization-group sense in 3<or=d<4 dimensions we performed the standard mass renormalization and additional surface-enhancement constants renormalization. Besides, our investigations include modification of renormalization scheme for the case of two inert walls. The obtained results confirm that the depletion interaction potential and the resulting depletion force between two repulsive walls are weaker for chains with excluded volume interaction (EVI) than for ideal chains because the EVI effectively reduces the depletion effect near the walls. Our results are in qualitative agreement with previous theoretical investigations, experimental results, and with the results of Monte Carlo simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of polymers in a curved box : Variable range bond - ing models

– We propose new polymer models for Monte Carlo simulation and apply them to a polymer chain confined in a relatively thin box which has both curved and flat sides, and show that either an ideal or an excluded-volume chain spends more time in the curved region than in the flat region. The ratio of the probability of finding a chain in the curved region and in flat region increases exponentially...

متن کامل

Density and Polarization Profiles of Dipolar Hard Ellipsoids Confined between Hard Walls: A Density Functional Theory Approach

The density and polarization profiles of the dipolar hard ellipsoids confined between hard walls are studied using the density functional theory (DFT). The Hyper-Netted Chain (HNC) approximation is used to write excess grand potential of the system with respect to the bulk value. The number density is expanded up to zero and first order in polarization to find the results. For the zero order in...

متن کامل

Statistical mechanics of charged polymers in electrolyte solutions: a lattice field theory approach.

The lattice field theory approach to the statistical mechanics of a classical Coulomb gas [R.D. Coalson and A. Duncan, J. Chem. Phys. 97, 5653 (1992)] is generalized to include charged polymer chains. Saddle-point analysis is done on the functional integral representing the partition function of the full system. Mean-field level analysis requires extremization of a real-valued functional which ...

متن کامل

General approach to polymer chains confined by interacting boundaries. II. Flow through a cylindrical nano-tube.

The Laplace-Green's function methods of Paper I are extended to describe polymers confined in interacting, impenetrable cylindrical geometries, whose treatment is far more challenging than the slit and box geometries considered in Paper I. The general methods are illustrated with calculations (as a function of the polymer-surface interaction) of the free energy of confinement, the radial densit...

متن کامل

Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries.

A numerical method to simulate the dynamics of polymer solutions in confined geometries has been implemented and tested. The method combines a fluctuating lattice-Boltzmann model of the solvent [Ladd, Phys. Rev. Lett. 70, 1339 (1993)] with a point-particle model of the polymer chains. A friction term couples the monomers to the fluid [Ahlrichs and Dunweg, J. Chem. Phys. 111, 8225 (1999)], provi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 80 4 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2009